
app.jbbres.com

© 2010 app.jbbres.com 1

Using Action(s) to
expand the market

of your software

Action(s), the powerful automation tool, brings developers some powerful
new business opportunities. If you haven't yet considered how Action(s)
can work for you, this article may give you some ideas for writing your
own actions or variables, either by adding them to your application or as
stand-alone products, and some business suggestions that could help you
find new ways to generate revenue using Action(s).

Action(s) lets users automate time-consuming, repetitive chores using
workflows that link together discrete functionalities (called elements) of
various applications. This means a user can run an Action(s) workflow
that downloads images from the family's shared summer reunion
webpage, add them to their personal pictures library, apply a filter that
changes the photos to sepia tone images, then upload the sepia versions
to another website.

The opportunities for developers lie in creating elements and workflows.
For application developers, this is a great way to expose key features and
extend their applications to reach new markets, as well as to increase
perceived value and loyalty among their existing customer base. Action(s)
also opens the door to creating actions and workflows that provide
powerful functionalities that developers can sell into a growing market as
stand-alone products or as plug-ins for existing applications. There are
similar markets for products such as Photoshop plug-ins or Internet
Explorer extension bars, which range from simple functionality to complex
and industrial-strength professional workflows and automation tools.

Opportunities for Application Developers
It's the very nature of elements and workflows that make them powerful
for expanding the market for an application. Actions focus attention on
specific functionality, which can be a powerful marketing tool, because
customers are often seeking specific functions. And workflows, which link
applications together and can be easily shared, can bring visibility to an
application in a crowded marketplace.

Let's take the case of a self-employed developer who creates a cool new
Java application. He needs to compete against the promotions and ads of
a myriad of other products to get the attention of the typical user. As a
small business person with a tiny marketing budget, it's difficult for him

app.jbbres.com

© 2010 app.jbbres.com 2

to establish brand recognition and mindshare for his product. He has
solved the tough technical problems, but marketing his product is
intimidating, as marketing is not core skill—in fact, he'd rather spend his
time on the technical aspect anyway. He needs an effective way to get
above the crowd and get some attention for his product.

Enter Action(s). To stand out in the market, our developer decides to
expose one killer feature of his application — a single, time-saving task
that his application does exceptionally well — through an Action(s)
element. He then makes his element widely available, for free or a for a
nominal fee, on various Action(s) sites. By focusing and drawing attention
to on one key capability of his application, has made it easy for people to
immediately grasp its value, and it begins to get attention. People begin
building it into their workflows—anyone can save the workflow containing
this Action as an application—and it starts getting shared among friends
and colleagues. Knowing it comes from a trusted source, recipients
double-click on the workflow application and it fires up Action(s). To those
users who don't have the missing application in their system, Action(s)
displays a message indicating that the workflow can't run until the
application is installed.

Once the Action is part of a workflow that does something valuable, the
missing application becomes desirable, even necessary.

A Market for Actions and Workflows
There's another kind of opportunity with Action(s) as well. Consider the
case of another developer who has an idea for some very compelling new
functionality, but isn't yet ready to build a fully-fledged, multi-feature
product. Instead, she'd like to get just that functionality—essentially, a
single feature or task—out there quickly to gauge the market and start
generating revenue early. She can quickly create an Action(s) element
that delivers her feature and lets users build it into workflows that rely on
other applications.

The Action(s) API make creating elements easy, and there are various
technology options. Depending on the resource integration needs of the
Action and the developer's personal skill set, she can create her element
in Java or in any other developer language that can be run on the Java
VM, such as PHP, JavaScript, Python, Ruby or JavaFX.

When it comes to UI design, our developer's work is made light. Unlike a
full-blown application, she just needs to design a minimal UI for the
Action's pane. Figure 1 shows the Create Thumbnail Images action
element, a good example of a UI that provides enough information to be
useful, but not so much that it's busy or confusing.

app.jbbres.com

© 2010 app.jbbres.com 3

Figure 1: Just Enough User Interface for an action element pane.

Simply put, Action(s) gives developers the freedom to build and sell
smaller components. For example, instead of spending a year building
one application with 100 features that sells for $29.95, a developer could
release one or two elements right away, and then incrementally build up
a suite of dozens of elements that sell for a few dollars each. This model
generates essential start-up revenue, and eventually the developer can
bundle a set of elements with a discounted price for the package. Users
get the choice of buying one or many elements, as they see fit, and the
developer stays productive while still generating sales.

Building Customer Loyalty
A workflow that does something critical for a user is not likely to be
abandoned. If that workflow includes elements bound to one or more
applications, the user is likely to stay loyal to those applications, because
the user has developed a dependency on the workflow. If the workflow
does what they need time and again, there's simply no reason to change.
They are also likely to recommend the workflow to others.

Equally worth mentioning, for businesses that rely on automation,
workflows become part of their business processes and infrastructure.
They invest internal resources for developing and fine-tuning them, train
people around them, and are thus generally very committed to them.

Conclusion
Action(s) is significant because it's more than a technology—it's a delivery
mechanism for a developer to increase sales and gain mindshare with
customers who might not otherwise realize that the product has value.
Whether you're selling a brand-name application or have an idea for the
next killer feature, the path to more customers starts with that robot icon
in your desktop.

app.jbbres.com

© 2010 app.jbbres.com 4

Getting Started
With the support of Java and the flurry of activity around Action(s),
there's no better time to get started. These steps will help you start
taking advantage of Action(s) today:

• Make sure your application is scriptable or provides a Java API.
Developers out in the world can't write Action(s) elements to
leverage your application unless the application is scriptable.

• Write your own Action(s) elements. This puts you in the driver's
seat to make sure the element is bound to your hosting application
for maximum revenue potential. Developers don't have as much
incentive to do that for you. To learn how to write elements and
create Workflows, check out the Resources for Action(s)
Developers at http://app.jbbres.com/actions/developers. You can
also have a look at existing Action(s) elements for ideas:
http://app.jbbres.com/actions/more.

For more information on using Action(s), visit the Action(s) website
http://app.jbbres.com/actions.

