
app.jbbres.com

© 2010 app.jbbres.com 1

Create your Own
Actions

A Quick Reference Guide

Action(s), the powerful application by app.jbbres.com, helps you
streamline repetitive everyday manual tasks quickly, efficiently, and
effortlessly without programming. You can easily automate tasks such as
renaming a large group of files, manipulating dozens of images, or
download new version of documents from the Internet. Once automated,
you can repeat those tasks again and again.

The basic building block in Action(s) is an action. Each action is designed
to perform a single task, such as downloading images on a Web page or
copying files from one folder to another. Instead of being a do-it-all tool,
an action is purpose-designed to perform a single task well. The power in
Action(s) comes from sequencing actions into a workflow. By combining
several actions into a workflow, you can quickly and easily accomplish a
specific task that no one action can accomplish on its own. This idea of
building functionality from small, discrete components dates back to the
early days of computers programming. The breakthrough that Action(s)
brings is allowing you to assemble small tools in an easy, intuitive graphic
user interface. Anyone with development skills is a prime candidate for
creating actions, and in most cases they will be able to do it much faster
than scripting by hand.

The beauty of an action is that it can take advantage of many sources of
functionality. Actions can access the functionality of the core Java
frameworks, leverage the command-line tool environment, or take
advantage of the specialized features of a particular application. Even
better, it's easy to create your own actions with Java. If you are an
application developer, creating actions for your users is a great
opportunity: it allows you to provide extended functionality in small, bite-
sized units for use in their workflows.

Creating great actions and workflows can help expose key features of
your application, making it even more valuable to your users. Creating
actions and workflows that access functionality in other applications on a
user's system is another tremendous opportunity to extend the value of
your application.

This article shows you how Action(s) works, how you can build your own
actions to use in Action(s), and how you can distribute those actions to
users.

app.jbbres.com

© 2010 app.jbbres.com 2

Using Action(s)
Action(s) comes preloaded with a large library of actions. These actions
expose functionality built into the operating system, such as dealing with
files and directories or taking a screenshot. There are also actions that let
you write shell scripts. You can use these actions to rename a group of
files or to resize an image. This library of actions is accessed and
organized on the left hand side of the Action(s) window.

To assemble a workflow from a set of actions, simply drag-and-drop the
actions from the library into the sequence in which you want them to run.
Each action in the workflow corresponds to an individual step that you
would need to perform manually. Each action comes with a small GUI
panel that lets you tweak its options and settings. Action(s) shows these
panels connected, along with the types of data that are flowing from one
action to another.

Once you have created a workflow, you can save it as an editable
document. This lets you re-open, edit, and run the workflow inside of
Action(s). Another option is to save the workflow as non-editable
document (called an executable workflow). This will create a file that will
run the workflow when you double-click on it.

Creating an Action
As you can see, Action(s) is a powerful and flexible tool for users of all
experience levels. If you are an application developer, it should be clear
that letting users access the functionality of your application from

app.jbbres.com

© 2010 app.jbbres.com 3

Action(s) will enhance its value to them. Providing Actions is a powerful
additional path to the features and services that make your products
unique.

Actions are easy to create. A public API is available for creating Java
based actions. With this API, you can create actions, variables and
loadable bundles (called collections) that Action(s) uses.

There are three general types of actions that you can create:

• Actions that control an application to get something done.

• Actions that use system frameworks or other system resources to
get something done.

• Actions that perform a "bridge" function, such as prompting the
user for input, writing output to disk, or converting data from one
type to another.

The public API provides abstract classes that you can easily implement to
quickly develop your own actions. Those classes are available in the
com.jbbres.lib.actions.tools.elements package of the Action(s) API.

API: http://app.jbbres.com/actions/developers/

javadoc:
http://app.jbbres.com/actions/developers/javadoc/

To illustrate this article, we will create an action that, once placed in a
workflow, returns the path of the file it receives from the previous action.
The code of this example is available within the Action(s) API.

You’ll become more familiar with many of the files that will constitute the
action in the sections that follow. But here is a summary of the more
significant items:

• getFileName.properties: The information property list includes
the action description.

• GetFileName.java: The action class. This class extends
com.jbbres.lib.actions.tools.elements.SimpleAction.

Creating the Project

Depending on the EDI you are using for developing in Java, the process to
create a new project might be different. Refer to your EDI documentation
for more information on how to create a project.

You might need to include the Action(s) API as a known library of your
tool in order to be able to develop and compile your action.

app.jbbres.com

© 2010 app.jbbres.com 4

Creating the Action Class

The com.jbbres.lib.actions.tools.elements.SimpleAction class is a
very basic implementation of the action class. It does most of the work
for you as most of the functions and methods that this class should
contain are pre-defined by this abstract class.

SimpleAction is a parameterized abstract class with two type-variables,
which means that all implementation of this class requires two type-
arguments:

1. The first argument represents the type of object that the action
accepts as an input.

2. The second argument is the type of object that the action
generates as a result.

If an action does not have to deal with the input data handed it – for
example, its role is to select some items in the file system – the first
parameterized argument should be Void. On the opposite, if the action is
able to handle any type of input data, the first parameterized argument
will be Object.

These conventions also apply to the result data type too. A second
parameterized argument sets to java.lang.Void means that the action is
not expected returning a result. java.lang.Object informs that the
result of the action can be any type of object.

A particular case in action is a service not receiving input nor generating
result. Following the convention, such a service should extend
SimpleAction<Void, Void>. Action(s) will recognize this specific case
and will route the flow of data around the action.

In our example, we expect to receive a file and return a text. However,
most of the actions return and receive arrays, so we know that we are
most likely to receive an array of files (File[]) instead of a single file.
Having say that, your action will have, for each item in the array, to
return its path, so the result will be an array of text (String[]).

Furthermore, if the action preceding ours in the workflow does not return
an array of files but a single file, Action(s) will automatically transform
the result into an array (with a single item) so we do not have to worry
about the different type of data we might have to deal with.

public class GetFileName
 extends SimpleAction<File[], String[]> {

 /**
 * Instantiates a new action.
 */
 public GetFileName(Workflow workflow) {
 super(workflow);
 }
}

app.jbbres.com

© 2010 app.jbbres.com 5

Constructing the User Interface

The user interface of your action is displayed in the workflow definition
panel in Action(s). The user can use it to define the settings of the action.

The user interface must be provided by the getUI() method in the action
class.

In our example, the UI will provide a combo box allowing the user to
choose if he wants the action to return the full path of the files that the
action received, or only their file names:

JPanel uiPanel = new JPanel();
JLabel resultLabel = new JLabel("Result:");
String[] pathTypes =
 {"Full path", "File name only"};
JComboBox pathTypeComboBox =
 new JComboBox(pathTypes);

/**
 * Instantiates a new action.
 */
public GetFileName(Workflow workflow) {
 super(workflow);
 uiPanel.add(resultLabel);
 uiPanel.add(pathTypeComboBox);
}

/**
 * The action UI.
 */
public Component getUI() {
 return uiPanel;
}

The User Interface can be created using AWT, Swing or any other
compatible toolkit.

Implementing the execute method

The most important step in creating an action is writing the execute
method that implements the logic for your action.

The execute method has a single argument, input. It contains (in most
instances) the output of the previous action in the workflow; it is almost
always in the form of a list. The type of input is the first parameterized
argument of the action class (in our example, a File[]). Remember that
if the previous action result is not compatible, or if this action is the first
one in the workflow, the input parameter will be null. Make sure that
you handle this case properly to avoid a NullPointerException.

The method finally returns an output, which should be an object
compatible with the second parameterized argument of the action class
(in our example, a String[]). The method should always return an
output, even if it is null or the input object.

app.jbbres.com

© 2010 app.jbbres.com 6

If your action service encounters an error that prevents it from
proceeding, it should give information describing the error to Action(s),
which then stops executing the workflow and displays an error message.
To report errors, you must throw an ActionExecutionException
exception.

public String[] execute(File[] input)
 throws ActionExecutionException {
 if (input == null)
 return null;

 String[] result = new String[input.length];

 for (int i = 0; i < input.length; i++){
 if (pathTypeComboBox.getSelectedItem()
 .equals("Full path")){
 result[i] = input[i].getPath();
 } else {
 result[i] = input[i].getName();
 }
 }
 return result;
}

Saving and Restoring User Settings

The getParameters() and setParameters(Parameters) methods
generate and set the parameters associated to the User Interface. The
Parameters object that the getParameters() method returns is used by
Action(s) to store the state of the action within the .wkfl file when the
user saves the workflow. The same object is given to the
setParameters(Parameters) method when the user opens a .wkfl file, so
the User Interface can be reconstructed at a similar state as it was when
the workflow had been saved.

In our example, the getParameters() method must store in a
Parameters object the value selected by the user in the UI combo box,
and the setParameters(Parameters) method should restore the combo
box state based on the value stored in the Parameters object it received
as an argument.

/**
 * Returns the action settings as
 * a Parameter object.
 */
public Parameters getParameters() {
 Parameters parameters = new Parameters();
 parameters.setParameter("result.path.type",
 (String)pathTypeComboBox.getSelectedItem());
 return parameters;
}

/**
 * Sets the action settings from a
 * Parameters object.

app.jbbres.com

© 2010 app.jbbres.com 7

 */
public void setParameters(Parameters parameters)
 throws InvalidParametersException {
 String pathType =
 parameters.getParameter("result.path.type");
 pathTypeComboBox.setSelectedItem(pathType);
}

Specifying Action Properties

The Action(s) application uses special properties in an element
information property list to get various pieces of information it needs for
presenting and handling the action. This information includes:

• The name of the action

• The icon for the action

• The category for the action

• The description of types of data the action
accepts and the types of data it provides

• The description of the action

A properties file is a simple text file. You can create and maintain a
properties file with just about any text editor.

The name of this file begins with the base name of your action, but start
with a lower case, and ends with the .properties suffix. In our example
the action class base name is GetFileName, therefore the properties file is
called getFileName.properties. This file contains the following lines:

type=action
description.title=Get File Name
description.summary=This action returns the path or \
the name of files passed into it.
description.categories=#FilesCategory
description.input=Files/Folders
description.output=Files/Folders

Those properties are used by Action(s) to displays the description in its
lower-left view whenever the user selects the action. The description
briefly describes what the action does and tells users anything else they
should know about the action.

 A description has several parts:

• type: the type of element that the properties file defines. For an
action, the value of this property must always be action.

• description.icon: a 32 x 32 pixel image displayed in the upper-
left corner of the description. In the properties file you should
provide the relative path of the image within the package.
Accepted formats are PNG, JPEG, GIF and BMP.

• description.title: the name of the action.

app.jbbres.com

© 2010 app.jbbres.com 8

• description.summary: a sentence or two directly under the title
that succinctly states what the action does.

• description.input and description.output: states respectively
the type of data that the action accepts as an input and the type of
data that the action produce as a result.

A description’s title, summary, input and ouput are required or strongly
recommended.

Deploying actions
After having created your own actions, the last step is to deploy them so
everybody can use them into Action(s). Action(s) collection file (.actc)
format enables you to bundle all the files requires by your actions to
perform correctly into a single archive file.

Typically a collection file contains the class files and auxiliary resources
associated with the actions.

The Action(s) collection file format is based on the Java Archive (JAR) file
format. If you are familiar with JAR file creation, you will see that creating
a collection file follow the same mechanisms. Even better, if you have
created a JAR file containing your actions and variables, creating a
collection file is as simple as changing its extension from .jar to .actc and
adding a few lines in its manifest.

Writing the Collection Manifest

The manifest is a special file that can contain information about the files
packaged in a collection file. It is used to identify the actions available
within the collection package. There can be only one manifest file in a
collection file.

The manifest file is a simple text file. You can create and maintain it with
just about any text editor.

The name of this file should be MANIFEST.MF. This file contains the
following lines:

Manifest-Version: 1.0
ActionsElements:
com.jbbres.examples.actions.GetFileName

Warning: The text file from which you are
creating the manifest must end with a new line.
The last line will not be parsed properly if it does
not end with a new line.

app.jbbres.com

© 2010 app.jbbres.com 9

All lines contain key-value pairs. The key is on the left side of the equal
sign and the value is on the right. For instance, Manifest-Version is the
key that corresponds to the value 1.0.

• The first mandatory key is Manifest-Version. Its value should
always be 1.0 as the manifest is conform with version 1.0 of the
manifest specification.

• The second key is ActionsElements. Its value is the full class
name (including package name) of all actions included in the
collection file. If you want to declare more that one action, each
action class name should be separated by a space.

Creating the Collection File

Collection files are packaged with the ZIP file format. To create a
collection file, you can use the Java Archive Tool provided as part of the
Java Development Kit (JDK).

If your IDE provides a built-in jar creation tool, you can generate a
collection file by creating a JAR file and changing its extension from .jar to
.actc. However, you will need to make sure that your IDE includes your
manifest file into the JAR file created.

The basic format of the command for creating a collection file is:

jar cfm actc-file collection-manifest input-file(s)

The options and arguments used in this command are:

• The c option indicates that you want to create a collection file.

• The m option indicates that you want to include your own manifest
file within the collection file.

• The f option indicates that you want the output to go to a file (the
collection file you're creating) rather than to standard output.

• collection-manifest is the name (or path and name) of the
manifest file you have created for this collection.

• actc-file is the name that you want the resulting collection file
to have (extension should be .actc).

• The input-file(s) argument is a space-separated list of one or
more files that you want to be placed in your collection file. The
input-file(s) argument can contain the wildcard * symbol. If any of
the "input-files" are directories, the contents of those directories
are added to the JAR archive recursively.

The command to create a collection file names GetFileName.actc of our
project is:

jar cfm GetFileName.actc MANIFEST.MF bin

app.jbbres.com

© 2010 app.jbbres.com 10

Deploying a Collection File

Your collection file created, your final step is now to make sure that
people are able to download and install it on their computer. Depending
on the audience you are targeting, the deployment strategy you can use
are very different.

The easiest deployment strategy you can implement is to let your final
user installs the collection file himself.

From a user perspective, installing a collection in Action(s) is a very
simple operation. Opening a collection file (.actc) will trigger the collection
installation within Action(s), copying the collection file within the user
library. The user will immediately be able to see and use the actions from
the new collection his workflows.

As a developer, neither specific coding nor setting is required. You simply
need to provide the collection file to the user, for example via a download
section on your website. However, this strategy requires the user to have
Action(s) installed on its computer, otherwise the collection file will not be
recognized by the system and opening the file will result on an error
message.

The http://app.jbbres.com/actions/more webpage
provides a free listing of 3rd parties Action(s)
actions. Visit it to get your collection file listed.

If your strategy is to provide your actions and variables as an additional
feature of your application, it is possible to create an automatic
installation of your collection files within Action(s) without requiring an
user intervention.

Action(s)’ 3rd party collections are stored in the Action(s)’ library folder, a
specific directory on the user computer. Any .actc file stored in this
directory is automatically loaded into the library next time the user starts
Action(s).

The Action(s)’ library folder is located in the application library folder
within the user’s directory. Depending on the operating system used by
your user, this folder might be located at a different path. The common
paths are:

• Windows XP: C:\documents and settings\%username%\local
settings\application
data\app.jbbres.com\Actions\plugins\

• Windows Vista & Windows 7:
C:\Users\%username%\AppData\Local\app.jbbres.com\Actions
\plugins\

• Mac OS X:
~/Library/Preferences/app.jbbres.com/Actions/plugins/

By providing a script copying your collection file within the adequate
folder you deploy your actions and variables transparently for the final
user.

app.jbbres.com

© 2010 app.jbbres.com 11

Action Design Guidelines
Since many actions are used with each other in Action(s), they should
have a consistent look and feel. Probably the most important piece of
advice is to keep an action as simple and as discrete as possible. An
action should not attempt to do too much. An action that resembles a
multi-tool will be too specialized to be useful and will limit the user. If the
functionality that you want to provide is complicated, consider breaking it
up into many small independent actions.

The user interface should also be kept as simple as possible. You should
try to minimize the use of vertical space. In particular, use combo list
instead of radio buttons and avoid tab views. Probably the best strategy
to adopt is to look at the other actions in Action(s). The more you can
make yours look like the ones that are already there, the better off your
users will be.

Conclusion
As you have seen, Action(s) is a powerful tool. It let users take control of
tasks that they need to do every day. And it also let developers allow
users to extend the functionality of their applications in ways that they
could never anticipate.

For More Information
 Using Action(s) to expand the market of your software

 Action(s) API

 Action(s) Programming Guide

 Action(s) JavaDoc

