
app.jbbres.com

Action(s)
Developer Guide

app.jbbres.com

© 2010 app.jbbres.com 1

Edited and written by Jean-Baptiste Brès.

Copyright ©2010 app.jbbres.com. All rights reserved.

The owner or authorized user of a valid copy of the Action(s) API may reproduce this
publication for the purpose of learning to use such API. No part of this publication may be
reproduced or transmitted for commercial purposes, such as selling copies of this publication
or for providing paid for support services.

Every effort has been made to ensure that the information in this manual is accurate.
app.jbbres.com is not responsible for printing or clerical errors. Because Action(s) frequently
releases new versions and updates to its applications and Internet sites, images shown in
this book may be slightly different from what you see on your screen.

Information in this document, including URL and other Internet Web site references, is
subject to change without notice.

Other company and product names mentioned herein are trademarks of their respective
companies. Mention of third-party products is for informational purposes only and
constitutes neither an endorsement nor a recommendation. app.jbbres.com assumes no
responsibility with regard to the performance or use of these products.

Even though app.jbbres.com has reviewed this document, APP.JBBRES.COM MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED “AS IS,” AND YOU, THE READER,
ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APP.JBBRES.COM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED.

app.jbbres.com

© 2010 app.jbbres.com 2

Contents
Introduction to Action(s) programming guide4

Who Should Read This Document ..4

Organization of This Document ...4

Additional documentation...5

Feedback and Bug Reporting ..5

Chapter 1 | Action(s) and the Developer7

Constructing Workflows with Action(s) ...7

Developing for Action(s) ..8

Chapter 2 | How Action(s) works10

Loadable plug-in Architecture ...10

Threading Architecture...13

The Action(s) Classes ..13

The Element Information Property List ...16

Chapter 3 | Design Guidelines for Action(s)18

What Makes a Good Element?...18

Action Input and Output...18

Variable data..19

Naming an Action..19

Naming a Variable...19

The Element icon ..20

The User Interface of an Action ...21

Chapter 4 | Developing an Action23

Creating the Project ..24

Creating the Action Main Class ..24

Constructing the User Interface ..24

Writing the Action Service ..33

Specifying Action Properties ...36

Internationalizing the Action ...38

Testing and Debugging the Action ...39

app.jbbres.com

© 2010 app.jbbres.com 3

Chapter 5 | Developing a Variable41

Creating the Project ..42

Creating a Runtime Variable ...42

Creating a storage variable...43

Creating the Variable’s Renderer and Editor44

Specifying Variable Properties...45

Internationalizing the Variable ..46

Testing and Debugging the Variable...47

Chapter 6 | Creating and Deploying a Collection File .48

Creating a Collection File..48

Deploying a Collection File..51

Chapter 7 | Element Property Reference53

Property keys and values ...53

Revision History ..58

app.jbbres.com

© 2010 app.jbbres.com 4

Introduction to Action(s) programming guide
Action(s) is an application designed by app.jbbres.com that automates
repetitive procedures performed on a computer.

With Action(s) users can construct arbitrarily complex workflows from
modular units called actions. An action performs a discrete task, such as
opening a file, cropping an image, or sending a message. A workflow is
a number of actions in a particular sequence; when the workflow
executes, data is piped from one action to the next until the desired result
is achieved. Workflows can also contain variables: virtual containers that
temporarily hold information, and pass it to the workflow when requested.

In Action(s), actions and variables are grouped under the element
denomination. They are enclosed into plug-in components named
collections, which can be easily added or removed from Action(s).

Action(s) is provided with a suite of ready-made elements, but developers
are encouraged to contribute their own elements. Developers can easily
create elements using Java.

Action(s) is designed to run with Java SE 6 or higher. It might work well
Java SE 5, but some of the features like click-and-drag tools, and some
pre-designed elements do not work or are limited when running the
application with Java SE 5. When developing elements for Action(s), it is
highly recommended to use Java SDK 6 or higher. More information on
Java and useful downloads can be found at http://java.sun.com.

Who Should Read This Document

Any developer can create elements for Action(s), as indeed can system
administrators or “power users” who are familiar with Java. But
application developers have a particular motivation for developing
elements. They can create actions that access the features of their
applications, and then install these elements along with their applications.
Users of Action(s) can then become aware of the applications and what
they have to offer.

Developers can also contribute to Action(s) by making their applications
scriptable or by providing a programmatic interface (via an API) that
developers use to create their elements.

Organization of This Document

Action(s) Programming Guide consists of the following articles:

• Action(s) and the Developer describes what Action(s) can do and
discusses the characteristics and types of elements,

• How Action(s) Works gives an overview of the architecture of
Action(s) and the Java interfaces and classes of the Action(s) API.

• Design Guidelines for Elements lists guidelines for element
development, including recommendations regarding I/O, naming,
and the user interface.

app.jbbres.com

© 2010 app.jbbres.com 5

• Developing an Action guides you through the major steps required
to develop an action.

• Developing a Variable guides you through the major steps required
to develop a variable.

• Creating and Deploying a Collection File describes the steps
required to create a collection of elements and to deploy it.

• Action(s) Element Property Reference defines the types and
expected values for the properties specified in an element’s
information property list.

Additional documentation

As this document provides all the necessary documentation to create and
deploy your own elements, a good understanding of the Java language is
a pre-requisite to reading this document.

Website

The Action(s)’ website is all about Action(s). It features lots of up-to-date
information about the application, including new and updated features,
development news, and tutorials.  http://app.jbbres.com/actions

Java Sun Website

The Java Sun Website gets you code samples, developer tools,
downloads, open-source projects, resource centres, and support to Java.
 http://java.sun.com

The Java Tutorials

The Java Tutorials are practical guides for programmers who want to use
the Java programming language. They include hundreds of complete,
working examples, and dozens of lessons.
 http://java.sun.com/docs/books/tutorial/

Feedback and Bug Reporting

Though the Action(s) Team developers invest a lot of time and hard work
making sure Action(s) and the Action(s) API are high-quality applications,
as with any other software, bugs still sometimes find their way into the
application or the API. That is why it is very important to keep developers
informed about any bugs you are experiencing or any improvements that
you think should be done in order to improve the application. And the
sooner developers are informed, the faster they can act to fix or improve
a feature.

Feedback about the Programming Guide you are reading now is also very
welcome.

app.jbbres.com

© 2010 app.jbbres.com 6

Use the Report a Bug or Provide feedback form at
http://app.jbbres.com/support/feedback to let the Action(s) Team
developers know about any bugs or feature requests you have.

app.jbbres.com

© 2010 app.jbbres.com 7

Chapter 1 | Action(s) and the Developer
Action(s) is an application designed by app.jbbres.com that lets users
automate repetitive procedures performed on a computer.

With Action(s), users can quickly construct arbitrarily complex sequences
of configurable tasks that they can set in motion with a click of a button.
And they do not need to write a single line of code to do so.

All kinds of users, including system administrators and developers, can
derive huge benefits from Action(s). It enables them to accomplish in a
few seconds a complex or tedious procedure that manually might take
many minutes. Developers can contribute to what Action(s) offers in two
ways: by making their applications scriptable and by creating loadable
modules specifically designed for Action(s).

Constructing Workflows with Action(s)

As a developer, you can best appreciate how to integrate your software
products with Action(s) by understanding how users might use the
application. You can download and install the application at
http://app.jbbres.com. Figure 1 shows a typical Action(s) workflow.

Figure 1 | A typical Action(s) workflow

app.jbbres.com

© 2010 app.jbbres.com 8

A workflow in Action(s) consists of a sequence of discrete tasks called
actions. An action is a kind of functional building block. A workflow
hooks the actions together so that – in most cases – the output of one
action is the input of the subsequent action.

Clicking the run button in the upper-right corner of the window causes the
application to invoke each action of the workflow in turn, passing it
(usually) the output of the previous action.

To create a workflow, users choose each action they want from the
browser on the left side of the application window and drag it into the
layout view in the right side of the window. They can search for specific
actions by category, or keyword. Once dropped, an action presents a view
which, in almost all cases, contains text fields, buttons, and other user-
interface elements for configuring the action. In addition to configuring
each action, users can move them around in the workflow to put them in
the desired sequence.

Actions can be virtually anything that you can do on a computer. You can
have an action that copies files, an action that crops an image, an action
that send an email, or an action that builds a project in Java or C++.
Actions can either interact with applications or draw on system resources
to get their work done. By stringing actions together in a meaningful
sequence - that is, in a workflow - a user can accomplish complex and
highly customized procedures with a click of a button. Action(s) come
with dozens pre-installed of actions.

Users can also use variables to temporary store some data and results.
Actions are able to access to the variables if they are designed to do so,
and users can also retrieve the value of a variable at any time within the
workflow and use it as an input to any action.

They can be variables storing any type of data: file, text, images, date...

Actions and variables are referred as the elements of the workflow.

Once their workflow is defined, users can then save the workflow as a
document that can be run again and again in Action(s).

Developing for Action(s)

Given an automation tool as powerful and flexible as Action(s), it’s clear
that any element you develop for it benefits both you and the user,
especially if that element accesses what your application has to offer.
Users have an additional path to the features and services that make your
products unique, and this in turn enhances the visibility and reputation of
your products.

You don’t even have to be a programmer (in the traditional sense) to
develop elements for Action(s).

As we saw in the previous section, elements can be either actions or
variables. There are three general types of actions:

Tip: Consider
making your
applications
accessible to 3rd
parties elements
even if you do not
provide any
Action(s)
elements of your
own. Other
developers may
decide to create
elements that
access your
application’s
services

app.jbbres.com

© 2010 app.jbbres.com 9

• An action that controls an application to get something done.
• An action that uses system APIs and other system resources to get

something done.
• An action that performs some small but necessary “bridge”

function such as prompting the user for input, writing output to
disk, or informing the user of progress.

And two general types of variables:

• A variable that allow access to data related to your application,
such as a specific folder.

• A variable that can store specific data used by your application or
your actions.

From a developer’s perspective, actions and variables have a common
programmatic interface and a common set of properties.

The programmatic interface is defined by a Java interface: Element. Two
sub-interfaces inheriting from Element: Action and Variable, are
available to describe respectively actions and variables.

Each element is associated to a description file known as the element
information property list. It defines characteristics such as:

• The name and description of the element
• The icon associated to it.
• The categories of task it performs
• The description of the data the actions accepts and provides.

and can be accessed at any time without having to create an instance of
the element. See the Action(s) Element Property Reference section for
further information on Action(s) properties.

The Action(s) API provides support for element developers. It includes all
the interfaces and classes required to create your own elements,
additional classes to quickly create actions and variables and Swing
objects that interact directly with the Action(s).

You can download the Action(s) API at
http://app.jbbres.com/actions/developers.

app.jbbres.com

© 2010 app.jbbres.com 10

Chapter 2 | How Action(s) works
The following sections describe the development environment, runtime
architecture, and class hierarchy for Action(s) elements.

Loadable plug-in Architecture

The Action(s) application is based on a loadable plug-in architecture.
Elements are packaged as a loadable plug-in called collection. A
collection contains resources of various kinds and usually binary code, but
it is not capable of executing that code on its own. The internal structure
of a collection is similar to the java JAR files one.

When it launches, Action(s) immediately scans the currently installed
collections and extracts from each collection manifest the information
necessary to display and prepare the elements for use (see Figure 2).
Collections are stored in a standard file-system location: [Users
Preferences folder]/app.jbbres.com/Actions/plugins.

See Creating and Deploying a Collection File for information on installing
collections.

Figure 2 | When launched, Action(s) gets information about available elements

When it launches, Action(s) also loads any Java code and resources it
finds in the collection.

For each element of the collection, Action(s) gathered all the information
required to display the element description thought the element
information property list – a .properties file stored with the element class.
However, no instance of the element has been created at this stage.

app.jbbres.com

© 2010 app.jbbres.com 11

When a user drags an action or a variable into the workflow area the
application creates an instance of the element and displays the action’s
view or adds it in the variable list, depending if the element is an action
or a variable (see Figure 3).

Figure 3 | When user drags action or variable into workflow, Action(s) creates an instance
of the element.

Note: A new instance of the element is created for
each time the user drag the element in the
workflow. This means that the same element can
have multiple instances simultaneously in the same
workflow.

A New Workflow

When the user creates a new workflow by dragging one or more elements
into the workflow layout view, Action(s) does a couple of things:

• It creates an instance of the element by calling the default
constructor ElementName(Workflow workflow), passing the
workflow object as an argument.

• If the element is an action, it gets its User Interface by calling the
getUI() method of the Action instance and displays it within an
action view in the workflow area.

Users modify the parameters of an action by choosing pop-up items,
clicking buttons, entering text into text fields, and so on. When the
workflow is ready, they click the run button to execute the workflow. With
Action(s) acting as a coordinator, the application and each action perform
the following steps in the workflow sequence:

app.jbbres.com

© 2010 app.jbbres.com 12

• Action(s) invokes the execute(Object input, Parameter
parameter) method of the action, passing it the output of the
previous action as input via the input object. The settings made in
the user interface of the action can be propagated via the
parameter object.

• The action object (in most cases) takes the input and, based on
the parameters, transforms it or does whatever its stated role is
(such as importing it into an application or displaying output).

• As its last step, the action returns the result of its work (its
output). If it does not affect the data passed it as input, it simply
returns it unchanged.

While each action is busy, Action(s) displays a spinning progress indicator
in the action view. If an error occurs in an action, the action view displays
a red and an error message. If the action successfully completes, its

view displays a green mark. When the last action has finished its task,
the workflow execution is over.

An Un-Archived Workflow

When users save a workflow, the workflow and all of its elements are
archived. Action(s) invokes the getParameters() method of each of the
elements in the workflow. The combined parameters of each action of the
workflow are encoded and archived in a .wkfl file.

When Action(s) reads a workflow file from disk, it re-creates an instance
of all the elements in the workflow and invokes the
setParameters(Parameters) method of each elements. Based on the
parameters given, the element can re-creates its state, particularly the
last-selected parameters.

Once all elements in the workflows have been reinitialized from the file,
the workflow is ready to use. Users can change settings in elements and
run the workflow. Things continue on at this point as described in A New
Workflow.

Programming Implications of Plug-in Architecture

The loadable plug-in architecture of Action(s) has some implications for
developers willing to create their own actions or variables.

The main implication concern namespaces: a Java class defines a
namespace for the methods and instance variables it declares. Because of
this, identically named methods and instance variables in other classes do
not cause conflicts within a process. However the name of a class itself
exists in a namespace occupied by all classes loaded by a process.

For Action(s), with its loadable plug-in architecture, the potential for
namespace collisions – and hence runtime exceptions – is significant.
Action(s) can potentially load hundreds of elements from different sources
and, for example, if two action classes have the same name, there is a
potential for namespace conflict when those actions are loaded by
Action(s).

app.jbbres.com

© 2010 app.jbbres.com 13

To avoid namespace collisions, it is recommended that you declare your
classes within packages as distinctive as possible. For example, if your
company’s name is Acme, you might define your element classes within a
package com.acme.

You can find more information about package and how to name them at
http://java.sun.com/docs/books/tutorial/java/package/namingpkgs.html.

Threading Architecture

To improve runtime stability, Action(s) has a threading architecture that
puts different types of program activity on separate threads.

Action(s) starts a workflow on a secondary thread (that is, a thread other
than the main thread).

This threading architecture imposes restrictions:

• The user interface does not belong to the same thread than the
one executing the action, which means that the user can
potentially interact with the action UI while the action is executed.
However, the setEnabled(Boolean) method of the UI component
is called before and after the action execution. By overriding this
method you can make sure that the user will not be able to change
the settings of your action while it is running.

• The user cannot cancel the execution of an action while it is
running. If the user click on the stop or pause button, the
workflow will stop (or pause) only when the current action is
executed.

The Action(s) Classes

Action(s) as a technology includes not only the application and its
elements but also the Action(s) API. The API provides public interfaces
and classes that implement much of the common behaviour of elements
and workflows.

Elements, Actions and Variables

The Action(s) public model for creating elements (either actions or
variables) is defined in the com.jbbres.lib.action.elements package.
Figure 4 describes this model.

app.jbbres.com

© 2010 app.jbbres.com 14

Figure 4| The Action(s) public model

Element is an interface that specifies all methods essential to all elements
(actions or variables). An implementation of Element has 4 major
methods:

• getService() returns the service associated to the element. The
service defines how the element performs within the workflow. For
example, if the element is an action, the service will contain the
executable methods that the action is designed to perform. If the
element is a variable, the service will contain methods related to
data access.

• getParameters() and setParameters(Parameters), respectively
stores and loads the state of the element, as presented quickly
previously.

• getDescription(), a method that returns a dictionary derived
from the element description, usually the information specified in
the element information property list.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/Element.html

User Interface

The Action interface inherits of all Element methods. In addition, it
specifies a new method essential to all actions:

• getUI() returns the User Interface displayed in the workflow
definition panel in Action(s), and that user can use to define the
settings of the action.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/Action.html

Element
◆ getService()

◆ getParameters()

◆ setParameters(Parameters)

◆ getDescription()

Action
◆ getUI()

Variable
◆ getRenderer()

◆ getEditor()

app.jbbres.com

© 2010 app.jbbres.com 15

In a similar way than the Action interface, the Variable interface has
two User Interface methods in order to provide a better user experience
when working with variables:

• getRenderer() defines the how to render the variable value into
the variable table.

• getEditor() returns an editor that the user will be able to use to
changes the variable value during the workflow definition.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/Variable.html

ElementService, ActionService and VariableService

The getService() method of an Element returns an instance of
ElementService (an ActionService object if the element is an action, a
VariableService object if the element is a variable).

The service is a heart of an element as it defined its behaviour within the
workflow. It describes how the element performs during the workflow
execution.

For an action, the ActionService describes:

• the object types that are accepted as an input for the action
execution. This is the purpose of the isValidInputClass(Class)
method.

• the object types that the action execution may produce. This is the
purpose of the outputClass(Class) method.

• what the action does if it is executed by the workflow. This is the
purpose of the execute(Object, Parameters) method.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/ActionService.html

For a variable, the VariableService describes:

• the object type that the variable can store via the valueClass()
and isValidValueClass(Class)methods.

• The stored value with the getValue()and setValue(Object)
methods.

• The variable name (also called variable instance name), via the
getInstanceName()and setInstanceName(String) methods.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/VariableService.html

Tip: Action(s) 1.0
does not support
the getRenderer()
and getEditor()
methods. Their
support will be
added in Action(s)
very soon.

app.jbbres.com

© 2010 app.jbbres.com 16

Parameters

The parameters of an element serve a double objective:

1. They are used to save and restore the setting associated to an
element. When the user saves a workflow in a file, Action(s) calls
the getParameters()method of each element and convert the
received object into an xml document stored inside the .wkfl file.
When, later on, the user re-open the workflow, Action(s) extract
the xml document associated to the element, converts it into a
Parameters object, and assigns it to the element calling the
setParameters(Parameters) method.

2. If the element is an action, the parameters are passed as an
argument of the service’s method execute(Object, Parameters).
The method can extract from the received object the settings to
apply during its execution.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/Parameters.html

ElementDescription, ActionDescription and VariableDescription

The ElementDescription class – and its 2 subclasses
ActionDescription and VariableDescription, used respectively by the
Action and Variable classes – gives information regarding the element,
such as its name, a short description, its version number etc.

That information might or might not be the same as the one provided by
the element information property list and have various usages within the
workflow definition process. It is interesting to note that one of the
strength of the ElementDescription over the element information
property list is that it can provide information specific to an instance of
the element, whereas the element information property list only provide
general information regarding the Element class.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/elements/ElementDescription.html

The Element Information Property List

The element information property list is a .properties file stored within the
same package as the element class and providing characteristics such as:

• The name and description of the element.
• The icon it is associated to.
• The categories of task it performs
• The description of the data the action accepts and provides.

Contrary to the ElementDescription object associated to an element
instance, the element information property list is accessible at anytime,
even if no instance of the element is available. It is used to gather

app.jbbres.com

© 2010 app.jbbres.com 17

information regarding the element when Action(s) is launching and
display the extracted information in the element library.

app.jbbres.com

© 2010 app.jbbres.com 18

Chapter 3 | Design Guidelines for Action(s)
As with other parts of the human interface, Action(s)’s elements and
especially actions should have a consistent look and feel so users can
easily use them. The following guidelines will help you achieve that
consistent look and feel.

What Makes a Good Element?

Perhaps the most important guideline is to keep your element as simple
and focused as possible. An element should not attempt to do too much;
by doing so it runs the risk of being too specialized to be useful in
different contexts. For example, an action should perform a narrowly
defined task well. If an action you’re working on seems like it’s unwieldy,
as if it’s trying to do too much, consider breaking it into two or more
actions. Small, discrete actions are better than large and complex actions
that combine several different functionalities.

An element should inform the user what is going on, and if it encounters
errors, it should tell users about any corrective steps that they might
take. If an action takes a particularly long period to complete, consider
displaying a determinate progress indicator. (Action(s) displays a circular
indeterminate progress indicator when an action runs.)

You should provide an element in as much localization as possible. See
Developing an Action and Developing a Variable for further information on
internationalizing elements.

Action Input and Output

Interoperability is critical in the implementations of elements. An action’s
usefulness is limited by the types of data it can accept from other actions
and give to other actions in a workflow.

You specify these data types thought the isValidInputClass(Class)
and outputClass(Class) methods in the action’s service. The following
guidelines apply to action input and output.

• Make the types of data the action accepts as the less specific
possible. For example, if the action accepts an image, try to use a
java.awt.Image object instead of a
java.awt.image.BufferedImage.

• Specify multiple accepted types, unless that is not appropriate for
the action.

• Ideally, an action should accept and provide a list (or array) of the
specified types.

• If your action doesn’t require input and doesn’t provide output
(such as the Pause action), it should use the java.lang.Void
type. The API will then route the flow of data around the action.

• If the output class of your action is undetermined (for example if it
depends on the content of the action input), you can use the
java.lang.Object class.

app.jbbres.com

© 2010 app.jbbres.com 19

• Even if your action requires input it should still be prepared to
handle gracefully the case where it doesn’t get input (the received
value is null).

The usage of the following classes is recommended in order to maximize
the compatibility of your actions:

Object Class

Date java.util.Date

File and Folder java.io.File

Image java.awt.Image

Image File java.io.File

Number java.lang.Number

Text java.lang.String

URL java.net.url

Object java.lang.Object

N/A java.lang.Void

Variable data

The guidelines provided for action input and output apply to variable data
too.

Naming an Action

The following guidelines apply to the names of actions:

• Use long, fully descriptive names (for example, Add Attachments
to Front Mail Message).

• Start the name with a verb that specifies what the action does.
• Use plural objects in the name – actions should be able to handle

multiple items, whether that be URLs or files. However, you may
use the singular form if the action accepts only a single object (for
example Add Date to File Names, where there can be only one
date).

• Don’t use “(s)” to indicate one or more objects (for example, Add
Attachment(s)). Use the plural form.

Naming a Variable

The following guidelines apply to the names of variable:

• If your variable can store a value, start the name with “New”,
followed by a short description of the type the variable can store.
A good name for a storage variable can be New audio file.

• If your variable provides access to an external data, such as the
default folder used by your application or the number of customers
recorded in your database, simply states what the data is (for
example: Pictures folder or Number of customers).

app.jbbres.com

© 2010 app.jbbres.com 20

• Use plural objects if the variable may returns more than one
object. Otherwise use singular.

• Don’t use “(s)” to indicate one or more objects (for example,
Customer(s)). Use the plural form.

The Element icon

This section describes the overall philosophy behind element icons.

Action(s) offers an illustrative icon style to convey a lot of information in a
small space. Anti-aliasing makes curves and no rectilinear lines possible.
Alpha channels and translucency allow for complex shading and
dimensionality. All of these qualities allow you to create lush, vibrant
icons that capture the user’s attention.

To represent your element in Action(s), it’s essential to create high-
quality icons that scale well in the various places the icon appears.
Action(s) uses two version of the element icon: a 32 x 32 pixels version
when displaying the element in the element description panel, and a 16 x
16 pixels version when displaying the element in the library. If the
provided icons do not match with those sizes, Action(s) automatically
rescale the icons to fit with these requirements.

A 16 x 16 pixels icon

A 32 x 32 pixels icon

Figure 5 | Icons sizes

Traditionally, an element icon looks like a colour square with rounded
corners. It includes an image representing the element functionality.

The square colour depends on the type of element the icon represents: a
red square represents an action, a light blue square represents a storage
variable and a purple square represents a runtime variable.

An action icon

A storage variable icon

A runtime variable icon

Figure 6 | Icons’ background colours

The image is not centred in the middle of the square but in the middle of
the lower right quarter of the square, as shown in the following example.

Tip: The standard
bit depth for icons
and images is 24
bits (8 bits each
for red, green,
and blue), plus an
8-bit alpha
channel. The PNG
format is
recommended,
because it
preserves colour
depth and
supports an
embedded alpha
channel.

app.jbbres.com

© 2010 app.jbbres.com 21

Figure 7 | Image position within the square

Element icons should make their associated functionality obvious. If the
element provides access to functionalities from an external application,
using the application icon is recommended.

Templates of element icons are provided in the API to help you create
your own icons for Action(s).

The User Interface of an Action

The user interface of an action should adhere to the following guidelines:

Keep it simple

• Refrain from using boxes.
• Minimize the use of vertical space; in particular, use combo boxes

instead of radio buttons even if there are only two choices.
• Avoid tab views; instead, use hidden tab views to swap alternate

sets of controls when users select a top-level choice.
• Don’t have labels repeat what’s in the action title or description.

Keep it small and consistent

• Use 10-pixel margins.
• Use small controls and labels.
• Follow the Java Look and Feel guidelines – visit

http://java.sun.com/products/jlf/ for more information.
• Implement behaviour expected in a user interface – for example,

tabbing between multiple text fields.

Provide feedback and information to users

• Use determinate progress indicators when a user-interface
element needs time to load its content; for example, an action that
presents a list of data extracted from a database load them.

• Present examples of what the action will do when possible. For
instance, the Make Sequential File Names action has an area of the
view labelled “Example” that shows the effect of action options;
the examples have the same font size and colour as the rest of the
action’s user interface. Figure 8 shows an action that uses images
for its example.

app.jbbres.com

© 2010 app.jbbres.com 22

Figure 8 | An action that includes an example of its effect

Streamline file and folder selection and display

• Insert a combo box that includes standard file-system locations,
such as Home, Start-up Disk, Documents, Desktop, and so on.

• The Action(s) API utilities includes pre-configured combo boxes for
selecting directories, and files; use these objects where
appropriate.

app.jbbres.com

© 2010 app.jbbres.com 23

Chapter 4 | Developing an Action
It’s easy to develop an Action(s) element. Because an action is a loadable
plug-in, its scope is limited and hence the amount of code you need to
write is limited. app.jbbres.com also eases the path to developing an
element because of all the resources it places at your disposal. Various
abstract element classes and Swing objects are at your disposal. You just
need to follow certain steps – described in this document – to arrive at
the final product.

The steps for developing an element don’t necessarily have to happen in
the order given below. For example, you can write an element description
at any time and you can specify the User Interface at any time.

The Action(s)’s class structure is described in section The Action(s)
Classes. This structure is very efficient and allows a maximum of
flexibility for the developer. However, if you want to develop a simple
action, you might not want to code all the methods and functionalities
declared in the interface.

app.jbbres.com provides some abstract classes that you can easily
implement to quickly develop your own elements. Those classes are
available in the com.jbbres.lib.actions.tools.elements package of
the Action(s) API.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/tools/elements/package-summary.html

You’ll become more familiar with many of the files that will constitute
your action in the sections that follow. But here is a summary of the more
significant items:

• actionName.properties: The information property list includes
the action description. See Specifying Action Properties for further
information.

• ActionName.java: The java class that controls the action. This
class extends
com.jbbres.lib.actions.tools.elements.AbstractAction.

• ActionNameService.java: The java class that provides the
service associated to the action. This class extends
com.jbbres.lib.actions.tools.elements.AbstractActionServ
ice.

• ActionNameUI.java: The java class that provides the User
Interface associated to the action. This class extends
com.jbbres.lib.actions.tools.elements.AbstractActionUI.

app.jbbres.com

© 2010 app.jbbres.com 24

Creating the Project

Depending on the EDI you are using for developing in Java, the process to
create a new action might be different. Refer to your EDI documentation
for more information on how to create a project.

You might need to include the Action(s) API as a known library of your
tool in order to be able to develop and compile your action. You can
download this file at: http://app.jbbres.com/actions/developers/

Creating the Action Main Class

The action main class controls the action by providing a centralized access
to all components of the action, such as the UI, the service class, the
action description and the parameters.

The com.jbbres.lib.actions.tools.elements.AbstractAction class is
the default implementation of the main action class. It does most of the
work for you as most of the methods that this class should contain are
pre-defined by this abstract class.

In your project, creates a new Java file named ActionName.java where
ActionName is the name of your action. The content of your class will look
like the following example:

package com.acme;

import java.io.IOException;
import com.jbbres.lib.actions.tools.elements.AbstractAction;
import com.jbbres.lib.actions.workflow.Workflow;

/**
 * The action main class.
 */
public class AddTextToFileName extends AbstractAction {

 /**
 * Instantiates a new <code>AddTextToFileName</code>.
 *
 * @param workflow - the workflow
 */
 public AddTextToFileName(Workflow workflow)
 throws IOException {
 super(workflow);
 }
}

Constructing the User Interface

In your project, creates a new Java file named ActionNameUI.java where
ActionName is the name of your action. This class extends
com.jbbres.lib.actions.tools.elements.AbstractActionUI. It
should have a constructor receiving a single AbstractAction object as
argument, and two methods getUIParameters() and
setUIParameters(Parameters):

app.jbbres.com

© 2010 app.jbbres.com 25

package packageName;

import com.jbbres.lib.actions.elements.*;
import com.jbbres.lib.actions.tools.elements.*;

public class ProjectNameUI extends AbstractActionUI {

 public ProjectNameUI(AbstractAction parent) {
 super(parent);
 }

 protected Parameters getUIParameters() {
 return null;
 }

 protected void setUIParameters(Parameters parameters)
 throws InvalidParametersException {
 }
}

You will create and design your User Interface within this class. The User
Interface can be created using AWT, Swing or any other compatible
toolkit. More information regarding how to use AWT and Swing can be
found online:
 http://java.sun.com/javase/6/docs/technotes/guides/awt/ and
 http://java.sun.com/javase/6/docs/technotes/guides/swing/.

The User Interface components should be added to the content panel of
the class. The content panel is a JPanel object that you can access by
calling the getContentPane() method.

The getUIParameters() and setUIParameters(Parameters) generate
and set the parameters associated to the User Interface. The parameter
object that the getUIParameters() method returns is used by Action(s)
to store the state of the User Interface within the .wkfl file when the user
saves the workflow. The same object is given to the
setUIParameters(Parameters) method when the user opens a .wkfl file,
so the User Interface can be reconstructed at a similar state as it was
when the workflow had been saved.

The Parameters object is also given to the action service as an argument
of the execute(Object, Parameters) method. The service will use the
parameters provided to know what settings the user want to apply to the
action when it is executed.

The following code is a good example of a well-designed User Interface:

package com.jbbres.examples.actions;

import java.awt.FlowLayout;
import javax.swing.JComboBox;
import javax.swing.JLabel;
import javax.swing.JTextField;
import com.jbbres.lib.actions.elements.*;
import com.jbbres.lib.actions.tools.elements.*;

/**
 * The User Interface of the AddTextToFileName action.

app.jbbres.com

© 2010 app.jbbres.com 26

 */
public class AddTextToFileNameUI
 extends AbstractActionUI {

 private JLabel addTextPanel;

 /**
 * The text field that the user will use to specify the
 * text to be added to the file name
 */
 private JTextField textField;

 /**
 * A combo box that the user will use to choose the
 * position where the text is to be added - before or
 * after the file name.
 */
 private JComboBox positionComboBox;

 /**
 * Instantiates a new AddTextToFileNameUI.
 *
 * @param parent - the parent action
 */
 public AddTextToFileNameUI(AbstractAction parent) {
 super(parent);

 addTextPanel = new JLabel("Add text:");
 textField = new JTextField(50);
 String[] positions = { "before file name",
 "after file name" };
 positionComboBox = new JComboBox(positions);

 getContentPane().setLayout(
 new FlowLayout(FlowLayout.LEADING));
 getContentPane().add(addTextPanel);
 getContentPane().add(textField);
 getContentPane().add(positionComboBox);
 }

 /**
 * Returns the current state of the UI.
 */
 protected Parameters getUIParameters() {
 Parameters parameters = new Parameters();

 // saves the current value of the components into
 // the parameters object.
 parameters.setParameter("text",
 textField.getText());
 parameters.setParameter("position",
 (String) positionComboBox.getSelectedItem());

 return parameters;
 }

 /**
 * Sets the current state of the UI.
 */
 protected void setUIParameters(Parameters parameters)
 throws InvalidParametersException {

app.jbbres.com

© 2010 app.jbbres.com 27

 // restores the components based on the content of
 // the parameters object.

 textField.setText(
 parameters.getParameter("text"));
 positionComboBox.setSelectedItem(
 parameters.getParameter("position"));
 }

 /**
 * Sets whether or not this component is enabled. This
 * method is overridden to make sure that when the state
 * of the UI changes all its components are updated.
 */
 public void setEnabled(boolean enabled) {
 super.setEnabled(enabled);
 addTextPanel.setEnabled(enabled);
 textField.setEnabled(enabled);
 positionComboBox.setEnabled(enabled);
 }

}

Show when run

Using an AbstractActionUI object is a great way to let users define the
behaviour of the action they are willing to use. However, the user defines
this setting when he creates the workflow. If the workflow is meant to be
re-used with different settings every time it is executed, the user will
have to update them manually within the workflow every time, which will
depreciate its experience of the application.

To get around this problem, AbstractActionUI includes a Show When
Run feature. If this feature is turned on, when Action(s) executes the
workflow it displays the user interface for the action when execution
reaches that point. The user can then make the required settings before
the action proceeds.

The User Interface of actions using the Show When Run feature includes
an additional section with a Show when running the workflow check box
in their top section. When a user clicks this control, this section expands
to expose a Prompt text field.

Figure 9 illustrates the “Show When Run” control sets.

app.jbbres.com

© 2010 app.jbbres.com 28

Figure 9 | The “Show when running the workflow” option

If the check box is selected and the workflow is run, the action displays
its User Interface in a separate window, as shown in Figure 10. The value
inputted in the prompt text field is used as title of the window.

Figure 10 | Action displaying User Interface in a window

The user makes selections and fills in information in this window and
clicks OK to have the action proceed.

The setShowWhenRunAvailable(boolean) method in the
AbstractActionUI class activates or deactivates the Show When Run
feature for the User Interface. It is also possible to define the default
state of the “Show when running the workflow” check box by using the
setShownWhenRun(boolean) method, and the default value of the prompt
with the setPrompt(String) method. Alternatively, the Show When Run
feature can be set within the action property list. See the Element
Property Reference section for more details.

Refining Show When Run

In the default Show When Run configuration, Action(s) displays the User
Interface in a separate window. Developers can refine the default

app.jbbres.com

© 2010 app.jbbres.com 29

behaviour of the Show When Run feature in two ways: by providing a
specific User Interface for the workflow creator when he activates the
Show When Run functionality or by defining a specific behaviour that will
replace the display of the User Interface window for the workflow user.

An example of a refined Show When Run behaviour is the Get Pictures
action provided by default with Action(s). As shown in Figure 11, the
default action’s User Interface provides four components: a list area
displaying the selected files, two buttons “add” and “remove”, and a
spinner updating the size of the image preview in the list.

Figure 11 | User Interface when the “Show when running the workflow” option is not
active.

When “Show when running the workflow” option is selected, the User
Interface changes and provides a single combo box for selecting the
starting directory.

Figure 12 | User Interface when the “Show when running the workflow” option is active.

In this case, when the action is run, a file chooser dialog is displayed,
showing the content of the starting directory.

app.jbbres.com

© 2010 app.jbbres.com 30

Figure 13 | Action specific behaviour when run.

You can easily change the content of the User Interface when the
workflow creator select the “Show when running the workflow” by
listening to AbstractActionUI events with an ActionUIListener. The
showWhenRunOptionChanged method of a ActionUIListener is called
every time the “Show when running the workflow” is checked or
unchecked. You can update the User Interface within this method, based
on the state of the check box, as shown in the example below.

package packageName;

import javax.swing.JCheckBox;
import javax.swing.JTextField;
import
com.jbbres.lib.actions.elements.InvalidParametersException;
import com.jbbres.lib.actions.elements.Parameters;
import com.jbbres.lib.actions.tools.elements.AbstractAction;
import
com.jbbres.lib.actions.tools.elements.AbstractActionUI;
import com.jbbres.lib.actions.tools.elements.ActionUIEvent;
import
com.jbbres.lib.actions.tools.elements.ActionUIListener;

public class ActionNameUI extends AbstractActionUI
implements ActionUIListener{

 public JCheckBox component1;
 public JTextField component2;

 public ActionNameUI(AbstractAction parent) {
 super(parent);
 addActionUIListener(this);

app.jbbres.com

© 2010 app.jbbres.com 31

 // Creates 2 components. component1 will be
 // visible when the Show When Run option is not
 // selected, otherwise component2 will be visible.
 component1 = new JCheckBox("This component is " +
 "displayed if the Show When Run option " +
 "is not selected");
 component2 = new JTextField("This component is" +
 "displayed if the Show When Run option " +
 "is selected");
 getContentPane().add(component1);
 getContentPane().add(component2);

 // turn on the Show When Run feature
 this.setShowWhenRunAvailable(true);
 // set the Show When Run option to not selected
 setShownWhenRun(false);
 }

 protected Parameters getUIParameters() {
 return null;
 }

 protected void setUIParameters(Parameters parameters)
 throws InvalidParametersException {
 }

 public void showWhenRunOptionChanged(ActionUIEvent e) {
 // The value of the Show When Run option has
 // changed
 component1.setVisible(!e.isShownWhenRun());
 component2.setVisible(e.isShownWhenRun());
 }

 public void promptChanged(ActionUIEvent e) {
 }
}

Changing the behaviour of the User Interface when the action is run and
the Show When Run option selected requires you to override the
showWhenRun() method of your AbstractActionUI instance.

The showWhenRun() method is called at the very beginning of the action
execution. Use this method to display a personalized frame where the
user can define the settings of the action. In order to have those settings
processed by the action service, make sure that the result of the
getUIParameters() method reflects the selection made by the user in
your personalized frame. The example below shows how a User Interface
can take advantage of the JOptionPane functionalities when using the
Show When Run feature.

package packageName;

import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JTextField;
import
com.jbbres.lib.actions.elements.InvalidParametersException;

app.jbbres.com

© 2010 app.jbbres.com 32

import com.jbbres.lib.actions.elements.Parameters;
import com.jbbres.lib.actions.tools.elements.AbstractAction;
import
com.jbbres.lib.actions.tools.elements.AbstractActionUI;
import com.jbbres.lib.actions.tools.elements.ActionUIEvent;
import
com.jbbres.lib.actions.tools.elements.ActionUIListener;

public class ActionNameUI extends AbstractActionUI
 implements ActionUIListener{
 JTextField textField;
 JLabel label;
 String input;

 public ActionNameUI(AbstractAction parent) {
 super(parent);
 addActionUIListener(this);

 textField = new JTextField();
 label = new JLabel("Text:");
 getContentPane().add(label);
 getContentPane().add(textField);

 setShowWhenRunAvailable(true);
 setShownWhenRun(false);
 }

 protected Parameters getUIParameters() {
 Parameters result = new Parameters();
 String text;
 if (isShownWhenRun())
 text = input;
 else
 text = textField.getText();

 if (text == null)
 text = "";

 result.setParameter("text", text);
 return result;
 }

 protected void setUIParameters(Parameters parameters)
 throws InvalidParametersException {
 String text = parameters.getParameter("text");
 if (text != null)
 textField.setText(text);
 else
 textField.setText("");
 }

 public void showWhenRun(){
 input = JOptionPane.showInputDialog(getPrompt(),
 textField.getText());
 }

 public void showWhenRunOptionChanged(ActionUIEvent e) {
 if (e.isShownWhenRun())
 label.setText("Default text:");
 else

app.jbbres.com

© 2010 app.jbbres.com 33

 label.setText("Text:");
 }

 public void promptChanged(ActionUIEvent e) {}
}

Writing the Action Service

The most important step in creating an action is writing the Service object
that implements the logic for your action.

In your project, creates a new Java file named ActionNameService.java
where ActionName is the name of your action. This class extends
com.jbbres.lib.actions.tools.elements.AbstractActionService.

AbstractActionService is a parameterized abstract class with two type-
variables, which means that all implementation of this class requires two
type-arguments:

1. The first argument represents the type of object that the action
accepts as an input.

2. The second argument is the type of object that the action
generates as a result.

For example, if your action is supposed to receive an array of files
(File[]) and return a text (String), the content of your service class file
will look like the following example:

package packageName;

import java.io.File;
import com.jbbres.lib.actions.elements.*;
import com.jbbres.lib.actions.tools.elements.*;

public class ActionNameService extends
AbstractActionService<File[], String> {

 public ActionNameService(AbstractAction parent) {
 super(parent);
 }

 @Override
 public String executeAction(File[] input, Parameters
parameters)
 throws ActionExecutionException {
 // The logic for the action goes here
 return "Result of the action";
 }
}

If an action does not have to deal with the input data handed it – for
example, its role is to select some items in the file system – the first
parameterized argument should be java.lang.Void. On the opposite, if
the action is able to handle any type of input data, the first parameterized
argument will be java.lang.Object.

Tip: For more
information
regarding generic
classes, visit
http://java.sun.co
m/docs/books/tut
orial/java/generic
s/index.html.

app.jbbres.com

© 2010 app.jbbres.com 34

These conventions apply to the result data type too. A second
parameterized argument sets to java.lang.Void means that the action is
not expected returning a result. java.lang.Object informs that the
result of the action can be any type of object.

A particular case in action is a service not receiving input nor generating
result. Following the convention, such a service should extend
AbstractActionService<java.lang.Void, java.lang.Void>. Action(s)
will recognize this specific case and will route the flow of data around the
action.

Implementing executeAction

In your custom subclass of AbstractActionService you must override
the method executeAction. Aside from a constructor, this method
implementation is the only requirement for creating a service.

The executeAction method has two parameters, input, and
parameters.

• The input parameter contains (in most instances) the output of
the previous action in the workflow; it is almost always in the form
of a list. The type of input is the first parameterized argument of
the service class (in our example above, a File[]). Remember
that if the previous action result is not compatible, or if this action
is the first one in the workflow, the input parameter will be null.
Make sure that you handle this case properly to avoid a
NullPointerException.

• The parameters parameter contains the settings made in the
action’s user interface.

The method finally returns an output, which should be an object
compatible with the second parameterized argument of the class (in our
example above, a String). The method should always return an output,
even if it is null or the input object.

Most action services operate on the input data given to them from the
previous action. Action(s) includes an internal technology called Smart-
Cast that converts, when possible, the output of an action into an
acceptable input type for the next action. For example, if an action
returning an Image is followed by an action that requires a File, Action(s)
will create a temporary file containing the image result of the first action
and pass it as the input of the second action. Smart-Cast can also convert
a single object into an array to ensure action’s compatibility. This means
that, as a developer, you do not have to worry too much about the type
of object you receive as an input or generate as an output.

The input object and the output object for an action are almost always
array objects. This is why many action services implement
executeAction using the following general approach:

1. Prepare an output array for later use.

app.jbbres.com

© 2010 app.jbbres.com 35

2. Iterate through the elements of the input array and for each
perform whatever operation is required and write the resulting
data item to the output array.

3. Return the output array.

public String[] executeAction(final File[] input,
 final Parameters parameters)
 throws ActionExecutionException {
 if (input == null)
 return null;

 final String[] result = new String[input.length];

 for (int i = 0; i < input.length; i++) {
 try {
 // read the file content
 final FileInputStream fis =
 new FileInputStream(f);
 final FileChannel fc = fis.getChannel();
 final long sz = fc.size();
 final MappedByteBuffer bb =
 fc.map(FileChannel.
 MapMode.READ_ONLY, 0, sz);

 final Charset charset =
 Charset.forName("ISO-8859-1");
 final CharsetDecoder decoder =
 charset.newDecoder();
 final CharBuffer cb = decoder.decode(bb);

 result[i] = cb.toString();
 fc.close();
 fis.close();
 } catch (final IOException e) {
 throw new ActionExecutionException(e);
 }
 }
 return result;
}

If your action service encounters an error that prevents it from
proceeding, it should give information describing the error to Action(s),
which then stops executing the workflow and displays an error message.

To report errors, you must throw an ActionExecutionException
exception. In the example above, you can see how the code stops and
informs Action(s) if an I/O exception occurs when trying to read the file.

An action service has only two restrictions related to its implementation of
executeAction:

1. It cannot return until it has completely finished whatever
processing it has initiated. For instance, if an action instructs a
camera to take a picture (an asynchronous process) it cannot

app.jbbres.com

© 2010 app.jbbres.com 36

return from executeAction method until the picture is taken. So
the action has to implement whatever blocking algorithm, timeout
logic, or threading strategy is necessary until the picture is taken.

2. The second restriction has to do with Action(s)’s threading
architecture. Because executeAction is run on a secondary
thread, if they want to display a dialog window it must be done on
the main thread. Especially, javax.swing.JDialog and
javax.swing.JOptionPane objects require a dialog owner to
display correctly. The getWorkflow().dialogOwner() method is
adequate for this purpose; for example:

JOptionPane.showInputDialog (getWorkflow().dialogOwner(),
“Input a text”, “default text”);

Specifying Action Properties

The Action(s) application uses special properties in an information
property list to get various pieces of information it needs for presenting
and handling the action. This information includes:

• The name of the action
• The icon for the action
• The categories for the action
• The description of types of data the action accepts and the types

of data it provides
• The description of the action

A properties file is a simple text file. You can create and maintain a
properties file with just about any text editor.

The name of this file begins with the base name of your action, but start
with a lower case, and ends with the .properties suffix. In your example
the action class base name is AddTextToFileName, Therefore the
properties file is called addTextToFileName.properties. This file
contains the following lines:

This is the default addTextToFileName.properties file
type=action
service=com.acme.AddTextToFileNameService
action.ui=com.acme.AddTextToFileNameServiceUI
description.title=Add Text To File Name
description.summary=This action add a text before or after \
the names of the files or folders passed into it.
description.icon=icon.png
description.categories=#FilesCategory
description.input=Files/Folders
description.output=Renamed Files/Folders
description.company.name=Acme
description.company.website=http://www.acme.com/
description.company.support=http://www.acme.com/support
description.version=1.0
description.copyright=© 2010 Acme

Element Property Reference describes the element properties, including
their purpose, value types, and representative values.

app.jbbres.com

© 2010 app.jbbres.com 37

Note that in the preceding file the comment lines begin with a pound sign
(#). The other lines contain key-value pairs. The key is on the left side of
the equal sign and the value is on the right. For instance, type is the key
that corresponds to the value action.

The 3 first properties of the file are used by Action(s) to generate a new
instance of the action when requires.

• type: the type of element that the properties file defines. For an
action, the value of this property must always be action.

• service: the full name (including package address) of the
action’s service class.

• action.ui: the full name (including package address) of the
action’s user interface class, if any.

The other properties are used by Action(s) to displays the description in
its lower-left view whenever the user selects the action. The description
briefly describes what the action does and tells users anything else they
should know about the action. Figure 14 shows what a typical description
looks like.

Figure 14 | A sample action description

Because the description fits into a relatively small area of the Action(s)
window, you should make it as concise and brief as possible. Ideally the
user should not have to scroll the description view to see all of the text.

A description has several parts:

• description.icon: a 32 x 32 pixel image displayed in the upper-
left corner of the description. In the properties file you should
provide the relative path of the image within the package.
Accepted formats are PNG, JPEG, GIF and BMP.

• description.title: the name of the action.
• description.summary: a sentence or two directly under the title

that succinctly states what the action does.
• description.input and description.output: states respectively

the type of data that the action accepts as an input and the type of
data that the action produces as a result.

A description’s icon, title, summary, input and ouput are required or
strongly recommended.

Tip: Because the
values of some
properties appear
in the user
interface, you
should include
translations of
them using a
located properties
file for each
localization you
provide. See
Internationalizing
the Action for
further
information.

app.jbbres.com

© 2010 app.jbbres.com 38

Internationalizing the Action

Most polished applications that are brought to market feature multiple
localizations. These applications not only include the localizations – that
is, translations and other locale-specific modifications of text, images, and
other resources – but have been internationalized to make those
localizations immediately accessible.

Java provides a very powerful method to developer to identify and
separate culturally sensitive or locale-dependent objects from their source
code: the resource bundle. As Oracle provides very good documentation
to understand and implement internationalization in Java, this section will
only focus what you must do to internationalize the action properties. For
more information about internationalization in Java, visit
http://java.sun.com/docs/books/tutorial/i18n/index.html.

Localizing the Action Properties

Action(s) automatically detects and uses localized version of your action
properties file if you provide them.

For each language translation of your action, you need to create a new
version of your initial action properties.

For example, if you have created the default properties file
myAction.properties to store all the properties in English, you will create a
similarly named file to store the properties in French.

Localized properties files use a naming convention that distinguishes the
potentially numerous versions of essentially the same properties. Each
properties file name consists of a base name and an optional locale
identifier. Together, these two pieces uniquely identify a bundle in a
package.

The local identifier is determined by the language code and by country
identifier. Some examples are provided in the following table:

Language Country Identifier

English (en) United States (US) _en_US

French (fr) France (FR) _fr_FR

French (fr) Canada (CA) _fr_CA

Japonese (jp) Japan (JP) _jp_JP

French (fr) Any country _fr

app.jbbres.com

© 2010 app.jbbres.com 39

Using the myAction.properties example, the French version of the
properties file would be named myAction_fr_FR.properties. The Canadian
French version would be myAction_fr_CA.properties. You can also have a
French translation independently of the country by providing a
myAction_fr.properties file.

The content of the localized file is similar to the content of the default file.
It contains the same keys, but the values associated to them are
translated into the destination language.

myAction.properties

This is the default properties file
#[...]
description.title=Get Text from File
description.income=Files
description.outcome=Text

myAction_fr_FR.properties

This is the French properties file
#[...]
description.title=Extraire le texte du fichier
description.income=Fichiers
description.outcome=Texte

You do not need to provide a translation of all entries from the default
properties file, especially for entries that are not supposed to be
translated (such as element or action.ui). If an entry cannot be found
in the translation file, Action(s) will extract the value from the default
properties file.

Action(s) will automatically identify and use the properties file that
corresponds to the user language and country. If no translation is
available, it will use the one in the default properties file.

Testing and Debugging the Action

Testing and debugging an action you have created require you to create
an Action(s)’s collection file and to load it into Action(s). For more
information about creating collection files, read the Creating and
deploying a collection file section.

Once your collection available in Action(s), you should create a workflow
which contains your action. Run the workflow and observe how your
action performs. To get better data from testing, consider the following
steps:

• Use the View Results action between after each action you want to
see the result.

• Use the Pause, Step and Cancel buttons to control the execution of
the workflow.

app.jbbres.com

© 2010 app.jbbres.com 40

Anything your action wrote to stderr (by calling the
System.out.printerr(String) method) will show up in the Action(s)
error log. The Action(s) error log can be display by choosing Report Bug
or Enhancement… in the Help menu, then by clicking on the View Error
Log button.

You can also use stdout (System.out.println(String) method) to
write a trace into the standard output.

app.jbbres.com

© 2010 app.jbbres.com 41

Chapter 5 | Developing a Variable
In a lot of ways, developing a variable is very similar to developing an
action. Both are based on the common element object foundation.

Variables have however a much more restricted range of functionalities
are they are limited to provide a value on request and, for some of them,
to store a given value for future access.

There are two types of variables that you might be willing to create:

• A runtime variable: a variable that allow access to data related
to your application, such as a specific user folder.

• A storage variable: a variable that can store specific data used
by your application and/or actions.

Runtime variables are not editable: they provide a value that is not stored
nor managed by Action(s) and whose has it own life cycle. Value can be
static (for example the path to the user’s picture folder) or dynamic (for
example the result of a SQL request on a database).

Storage variable a usually editable: they allow the user to set their
content and retrieve it at anytime during the workflow execution cycle
life. Once the execution ends, storage variables’ original values are
restored and all unsaved modification is lost.

In Action(s), runtime variables are represented by a purple icon and
storage variable by a blue icon.

A storage variable icon

A runtime variable icon

Figure 15 | Variable’s icons

app.jbbres.com provides some abstract classes that you can easily
implement to quickly develop your own variables. Those classes are
available in the com.jbbres.lib.actions.tools.elements package of
the Action(s) API.

 javadoc:
http://app.jbbres.com/actions/developers/javadoc/com/jbbres/lib/actions
/tools/elements/package-summary.html

You’ll become more familiar with many of the files that will constitute
your variable in the sections that follow. But here is a summary of the
more significant items:

• variableName.properties: The information property list includes
the variable description. See Specifying Variable Properties for
further information.

app.jbbres.com

© 2010 app.jbbres.com 42

• VariableName.java: The variable java class. This class extends
com.jbbres.lib.actions.tools.elements.RuntimeVariable if
the variable is a runtime variable, or
com.jbbres.lib.actions.tools.elements.StorageVariable if
the variable is a storage variable.

Creating the Project

Depending on the EDI you are using for developing in Java, the process to
create a new variable might be different. Refer to your EDI
documentation for more information on how to create a project.

You might need to include the Action(s) API as a known library of your
tool in order to be able to develop and compile variable action. You can
download this file at: http://app.jbbres.com/actions/developers/

Creating a Runtime Variable

The com.jbbres.lib.actions.tools.elements.RuntimeVariable class
is the default implementation of a runtime variable. It does most of the
work for you as most of the functions and methods that this class should
contain are pre-defined by this abstract class.

RuntimeVariable is a parameterized abstract class with a single type
variable, representing the type of object that the variable provides when
calling the getValue() method.

For example, if your variable provides a file object (File), the content of
your variable class file will look like the following example:

package packageName;

import java.io.File;
import
com.jbbres.lib.actions.tools.elements.RuntimeVariable;
import com.jbbres.lib.actions.workflow.Workflow;

public class VRuntime extends RuntimeVariable<File> {

 public VRuntime(Workflow workflow) {
 super(workflow);
 }

 public File getValue() {
 return new File("my file path");
 }

}

The getValue() method should returns the content of the variable. The
getValue() method is called every time the user try to access to the

app.jbbres.com

© 2010 app.jbbres.com 43

variable by adding a Get Variable Value action in its workflow. Its results
are passed as an input to the next action.

Creating a storage variable

The com.jbbres.lib.actions.tools.elements.StorageVariable class
is the default implementation of a storage variable. It does most of the
work for you as most of the functions and methods that this class should
contain are pre-defined by this abstract class.

As for RuntimeVariable, StorageVariable is a parameterized abstract
class with a single type variable, representing the type of object that the
variable can store.

For example, if your variable is designed to store a date object (Date),
the content of your variable class file will look like the following example:

package packageName;

import java.text.*;
import java.util.Date;
import com.jbbres.lib.actions.elements.*;
import
com.jbbres.lib.actions.tools.elements.StorageVariable;
import com.jbbres.lib.actions.workflow.Workflow;

public class VStorage extends StorageVariable<Date> {

 private DateFormat dateFormat =
 new SimpleDateFormat("yyyymmdd");

 public VStorage(Workflow workflow) {
 super(workflow);
 }

 public Parameters getParameters() {
 Parameters parameters = new Parameters();
 String formattedValue =
 dateFormat.format(getValue());
 parameters.setParameter("value", formattedValue);
 return parameters;
 }

 public void setParameters(Parameters parameters)
 throws InvalidParametersException {
 try {
 Date value = dateFormat.parse(
 parameters.getParameter("value"));
 this.setVariableValue(value);
 } catch (Exception e) {
 throw new InvalidParametersException(this,
parameters);
 }
 }
}

app.jbbres.com

© 2010 app.jbbres.com 44

The getParameters() and setParameters(Parameters) methods are
used by Action(s) to save and restore the default value of the variable
when saving and opening a workflow. The user can define the default
value when he creates the workflow by editing the variable within the
variable table at the bottom of the workflow. As a developer, you have to
make sure that the getParameters() method returns the value currently
stored in your variable, and that the setParameters(Parameters)
replaces the current value of the variable by the one described in the
Parameters argument. Action(s) makes sure that the Parameters
argument received by the setParameters(Parameters) method is always
similar to the one that the getParameters() method has produced.

Creating the Variable’s Renderer and Editor

In Action(s), the variable list, at the bottom of the workflow area, display
the variables that the user is currently using, their name, their type and
their current value. If the variable is a storage variable, the user can
double-click on the value and edit it. This allows him to define the default
value of a variable for the workflow.

Figure 16 | The variable section in Action(s)

Action(s) renders the variable value differently depending on the value
type. A String will be rendered as a label. A File will appear as the file
icon followed by the file name. Common variable value types have a
default renderer that Action(s) will use. If Action(s) failed finding a
compatible renderer, it will display the result of the toString() method
of the value object.

Similar process occurs for the value editor. When the user double-clicks
on the variable value, Action(s) will try to identify the default editor

Tip: The default
value setting
functionality is not
available in
Action(s) 1.0 but
will be added in
an upcoming
version.

app.jbbres.com

© 2010 app.jbbres.com 45

associated to the variable value type. However, if the identification failed,
no alternative editor will be provided and the user will not be able to edit
the value.

As a developer, you can define your own renderers and editors for the
variables you create. You simply need to override the getRenderer() and
getEditor() methods within your Variable object. The expected results
of those methods are respectively a
javax.swing.table.TableCellRenderer and a
javax.swing.table.TableCellEditor object.

The How to Use Tables Java Tutorial presents how to create
TableCellRenderer and TableCellEditor. See
http://java.sun.com/docs/books/tutorial/uiswing/components/table.html#
editrender for more information.

Specifying Variable Properties

Specifying variable properties is very similar to specifying action
properties. The Action(s) application uses special properties in an element
information property list to get various pieces of information it needs for
presenting and handling the variable. This information includes:

• The name of the variable
• The icon of the variable
• The description of the variable
• The description of types of data the variable can store or provide

As for an action properties file, the name of this file begins with the base
name of your action, but start with a lower case, and ends with the
.properties suffix. If your variable class base name is MyVariable,
Therefore the properties file is called myVariable.properties. This file
contains the following lines:

This is the default myVariable.properties file
type=variable
description.title=New Date
description.icon=icon.png
description.summary=Creates a new variable that can \
contain a date.
description.content=Date
description.company.name=Acme
description.company.website=http://www.acme.com/
description.company.support=http://www.acme.com/support
description.version=1.0
description.copyright=© 2010 Acme

Element Property Reference describes the element properties, including
their purpose, value types, and representative values.

The first property of the file is used by Action(s) to generate a new
instance of the variable when requires.

• type: the type of element that the properties file defines. For a
variable, the value of this property must always be variable.

Tip: Action(s) 1.0
does not support
customized
editors and
renderers, but
support will be
added in an
upcoming version.

app.jbbres.com

© 2010 app.jbbres.com 46

The other properties are used by Action(s) to displays the description in
its lower-left view whenever the user selects the variable.

Because the description fits into a relatively small area of the Action(s)
window, you should make it as concise and brief as possible. Ideally the
user should not have to scroll the description view to see all of the text.

A description has several parts:

• description.title: the name of the variable.
• description.summary: a sentence or two directly under the title

that succinctly states what the variable represents.
• description.content: states the type of data that the variable

can store or provide.

A description’s title, summary and content are required or strongly
recommended.

Internationalizing the Variable

As variable properties files and action properties files use the same
format, localization methods are the same for both type of files. Action(s)
automatically detects and uses localized version of your variable
properties file if you provide them.

For each language translation of your action, you need to create a new
version of your initial action properties.

Each localized properties file name consists of a base name and an
optional locale identifier. Together, these two pieces uniquely identify a
properties file. For example the myVariable.properties contains the
default properties of the variable written in English. The French version of
the properties file would be named myVariable_fr_FR.properties. The
Canadian French version would be myVariable_fr_CA.properties. You can
also have a French translation independently of the country by providing
a myVariable_fr.properties file.

The content of the localized file is similar to the content of the default file.
It contains the same keys, but the values associated to them are
translated into the destination language.

myVariable.properties

This is the default properties file
#[...]
description.title=New File
description.content=File

myVariable _fr_FR.properties

This is the French properties file
#[...]
description.title=Nouveau fichier
description.content=Fichier

app.jbbres.com

© 2010 app.jbbres.com 47

You do not need to provide a translation of all entries from the default
properties file, especially for entries that are not supposed to be
translated (such as element). If an entry cannot be found in the
translation file, Action(s) will automatically take the value from the
default properties file.

Action(s) will automatically identify and use the properties file that
corresponds to the user language and country. If no translation is
available, it will use the one in the default properties file.

Testing and Debugging the Variable

Testing and debugging a variable you have created require you to create
an Action(s)’s collection file and to load it into Action(s). For more
information about creating collection files, read the Creating and
deploying a collection file section.

Once your collection available in Action(s), you should create a workflow
which contains your variable. Run the workflow and observe how your
variable performs. To get better data from testing, consider the following
steps:

• Use the View Results action between after each action you want to
see the result.

• Use the Pause, Step and Cancel buttons to control the execution of
the workflow.

Anything your variable wrote to stderr (by calling the
System.out.printerr(String) method) will show up in the Action(s)
error log. The Action(s) error log can be display by choosing Report Bug
or Enhancement… in the Help menu, then by clicking on the View Error
Log button.

You can also use stdout (System.out.println(String) method) to
write a trace into the standard output.

app.jbbres.com

© 2010 app.jbbres.com 48

Chapter 6 | Creating and Deploying a Collection
File

After having created your own actions and variables, the last step is to
deploy them so everybody can use them into Action(s). Action(s)
collection file (.actc) format enables you to bundle all the files requires by
your actions and variables to perform correctly into a single archive file.

Typically a collection file contains the class files and auxiliary resources
associated with actions and variables.

The Action(s) collection file format is based on the Java Archive (JAR) file
format. If you are familiar with JAR file creation, you will see that creating
a collection file follow the same mechanisms. Even better, if you have
created a JAR file containing your actions and variables, creating a
collection file is as simple as changing its extension from .jar to .actc and
adding a few lines in its manifest.

The collection file format provides many benefits:

1. Decreased download time: all your actions, variables and
associated resources can be downloaded to a browser in a single
HTTP transaction without the need for opening a new connection
for each file.

2. Compression: the collection format allows you to compress your
files for efficient storage.

3. Package versioning: a collection file can hold data about the files it
contains, such as vendor and version information.

4. Portability: collection files can be used on any platform supporting
Action(s).

Creating a Collection File

Writing the Collection Manifest

The manifest is a special file that can contain information about the files
packaged in a collection file. It is used to identify the actions and
variables available within the collection package. There can be only one
manifest file in a collection file.

The manifest file is a simple text file. You can create and maintain it with
just about any text editor.

The name of this file should be MANIFEST.MF. This file contains the
following lines:

This is the manifest file
Manifest-Version: 1.0
ActionsElements: com.acme.MyAction com.acme.MyVariable

Note that in the file the comment lines begin with a pound sign (#). The
other lines contain key-value pairs. The key is on the left side of the equal
sign and the value is on the right. For instance, Manifest-Version is the
key that corresponds to the value 1.0.

app.jbbres.com

© 2010 app.jbbres.com 49

• The first mandatory key is Manifest-Version. Its value should
always be 1.0 as the manifest is conform with version 1.0 of the
manifest specification.

• The second key is ActionsElements. Its value is the full class
name (including package name) of all elements (actions and/or
variables) included in the collection file. Element class names
should be separated by a space. You only need to include the
element class name (the instance of AbstractAction,
RuntimeVariable or StorageVariable). Services, User Interface
and other associated classes and resources are automatically
identified by Action(s) using the element properties file.

You can have additional ActionsElements key-value pairs if it is
convenient for you. You simply need to add a number to the key name
and increment it for each line. For example:

This is the manifest file
Manifest-Version: 1.0
ActionsElements: com.acme.MyAction
ActionsElements2: com.acme.MyVariable
ActionsElements3: com.acme.AnotherAction
ActionsElements4: com.acme.AnotherVariable

Creating the Collection File

Collection files are packaged with the ZIP file format. To create a
collection file, you can use the Java Archive Tool provided as part of the
Java Development Kit (JDK). Visits http://java.sun.com/javase/downloads
to download the Java Development Kit.

If your IDE provides a built-in jar creation tool, you can generate a
collection file by creating a JAR file and changing its extension from .jar to
.actc. However, you will need to make sure that your IDE includes your
manifest file into the JAR file created.

The basic format of the command for creating a collection file is:

jar cfm actc-file collection-manifest input-file(s)

The options and arguments used in this command are:

• The c option indicates that you want to create a can file.
• The m option indicates that you want to include your own manifest

file within the collection file.
• The f option indicates that you want the output to go to a file (the

collection file you're creating) rather than to standard output.
• collection-manifest is the name (or path and name) of the

manifest file you have created for this collection.
• actc-file is the name that you want the resulting collection file

to have (extension should be .actc).
• The input-file(s) argument is a space-separated list of one or

more files that you want to be placed in your collection file. The
input-file(s) argument can contain the wildcard * symbol. If
any of the "input-files" are directories, the contents of those
directories are added to the collection archive recursively.

Warning: The
text file from
which you are
creating the
manifest must
end with a new
line. The last line
will not be parsed
properly if it does
not end with a
new line.

app.jbbres.com

© 2010 app.jbbres.com 50

An Example

Let us look at an example. Let consider two actions
com.acme.ConvertToJpeg and com.acme.ConvertToPng. Once compiled,
the project is having this structure:

Figure 17 | Example of project structure

The images subdirectory contains JPEG and PNG images used by the
actions.

The first step is to create the manifest file associated to the collection. It
will be named MANIFEST.MF and will be located in the root directory. Its
content would be:

This is the manifest file for ImageConverter.actc
Manifest-Version: 1.0
ActionsElements: com.acme.ConvertToJpeg
ActionsElements2: com.acme.ConvertToPng

To package all the files into a single collection file named
ImageConverter.actc, you would run this command from inside the root
directory:

jar cfm ImageConverter.actc MANIFEST.MF com

The com arguments represent a directory, so the Jar tool will recursively
place it and its content in the collection file. The generated collection file
ImageConverter.actc will be placed in the current directory.

The Jar tool will accept arguments that use the wildcard * symbol. As
long as there weren't any unwanted files in the root directory, you could
have used this alternative command to construct the JAR file:

jar cfm ImageConverter.actc MANIFEST.MF *

app.jbbres.com

© 2010 app.jbbres.com 51

Deploying a Collection File

Your collection file created, your final step is now to make sure that
people are able to download and install it on their computer. Depending
on the audience you are targeting, the deployment strategy you might be
willing to use might be very different.

The two deployment strategies describe in this section are the most
common ones but you can easily adapt them to your own needs or
creates your owns.

Manual installation

The easiest deployment strategy you can implement is to let the final user
installs the collection file himself.

From a user perspective, installing a collection in Action(s) is a very
simple operation. Opening a collection file (.actc) will trigger the collection
installation within Action(s), copying the collection file within the user
library. The user will immediately be able to see and use the actions and
variables from the new collection in Action(s).

As a developer, neither specific coding nor setting is required. You simply
need to provide the collection file to the user, for example via a download
section on your website.

However, this strategy requires the user to have Action(s) installed on its
computer, otherwise the collection file will not be recognized by the
system and opening the file will result on an error message.

If you’re providing the collection file via a website, you can easily add an
Action(s) launch button so your user can download and install Action(s)
instantly. Simply copy and paste the following lines within your webpage:

<script src="http://www.java.com/js/deployJava.js"></script>
<script>deployJava.launchButtonPNG='http://app.jbbres.com/jw
s/icons/actions-jws-launch-button.png';var url =
"http://app.jbbres.com/jws/app/actions.jnlp";
deployJava.createWebStartLaunchButton(url,
'1.6.0');</script>

Automatic installation

If your strategy is to provide your actions and variables as an additional
feature of your application, it is possible to create an automatic
installation of your collection files within Action(s) without user
intervention.

Action(s)’ 3rd party collections are stored in the Action(s)’ library folder, a
specific directory on the final user computer. Any .actc file stored in this
directory is automatically loaded into the library next time the user starts
Action(s).

Tip: The
http://app.jbbres.
com/actions/more
webpage provides
a free listing of
3rd parties
Action(s) actions
and variables.
Visit it to get your
collection file
listed.

app.jbbres.com

© 2010 app.jbbres.com 52

The Action(s)’ library folder is located in the application library folder
within the user’s directory. Depending on the operating system used by
your user, this folder might be located at a different path. The common
paths are:

• Windows XP: C:\documents and settings\%username%\local
settings\application
data\app.jbbres.com\Actions\plugins\

• Windows Vista & Windows 7:
C:\Users\%username%\AppData\Local\app.jbbres.com\Actions
\plugins\

• Mac OS X:
~/Library/Preferences/app.jbbres.com/Actions/plugins/

By providing a script copying your collection file within the adequate
folder you deploy your actions and variables transparently for the final
user.

app.jbbres.com

© 2010 app.jbbres.com 53

Chapter 7 | Element Property Reference
When you develop an element for Action(s), one of the steps is specifying
the properties of the element in its information property file (see
Specifying Action Properties and Specifying Variable Properties). Action(s)
uses these properties for various purposes, among them creating the
element instance and getting the element name, icon and description.

You must specify some of the Action(s) properties described below in an
element information property file (.properties), and optionally may specify
the others.

Property keys and values
type

This property is required. A string that specifies the concrete
type of the element. Accepted values are:

• action: if the element is an action.

• variable: if the element is a variable

This property is used to display the element within the correct
section in the library (Actions or Variables).

Example:

type=action

description.title

This property is required. A string giving the name of the
element to be displayed in the Action(s) user interface. Example
names are “Add Attachments to Front Message”, “Copy Files”, and
“Profile Executable”.

Example:

description.title=Copy Files

See the guidelines for naming elements in Design Guidelines for
Action(s).

description.icon

A string that specifies a file that contains the 32-by-32 pixel image
that Action(s) displays to the left of the element name in its user
interface. The icon name string should include the extension. It
refers to a custom image file (PNG, JPG, JPEG, GIF or BMP) in the
collection file. Its location is relative to the properties file.

app.jbbres.com

© 2010 app.jbbres.com 54

Example:

description.icon=icons/copy_files.png

See the guidelines for creating element icons in Design Guidelines
for Action(s).

description.summary

This property is required. A string giving a succinct description
of what the element does. It appears directly under the element
title.

Example:

description.summary=This action copies the specified \
files or folders to the specified location.

description.input

For actions only. A string giving the types of data the action
accepts. The subheading “input:” precedes this text in the
displayed description.

Example:

description.input=Files/Folders

description.output

For actions only. A string giving the types of data the action
provides. The subheading “result:” precedes this text in the
displayed description.

Example:

description.output=Files/Folders (copied files)

description.content

For variables only. A string giving the types of data the variable
can store or provide. The subheading “data:” precedes this text in
the displayed description.

Example:

description.content=Files

description.version

A string giving the version number of the element. The subheading
“version:” precedes this text in the displayed description.

app.jbbres.com

© 2010 app.jbbres.com 55

Example:

description.version=1.0.5

description.categories

A string that Action(s) uses to group the action with similar
elements in terms of their effects or the objects they operate on.
Action(s) presents categories in its user interface and also uses an
element category as a search criterion.

Category names are simply strings, with values such as Find,
Music, Pictures, System, Terminal, Text, and Utility. You could also
specify names for new categories. Categories should be separated
by semicolons (;).

Category codes are also available for major categories. You should
use the code names shown in the table bellow.

Code Name Category

#EmailCategory Email

#FilesCategory Files and Folders

#ImagesCategory Images

#InternetCategory Internet

#OtherCategory Other

#TextCategory Text

Example:

description.categories=System;#FilesCategory

description.support.website

 A string giving the URL of the element support website.

Example:

description.support.website=http://www.acme.com/support

description.company.name

A string giving the name of the company providing the element.

app.jbbres.com

© 2010 app.jbbres.com 56

Example:

description.company.name=Acme Inc.

description.company.website

 A string giving the URL of the company website.

Example:

description.company.website=http://www.acme.com/

description.copyright

A string giving the copyright notice for the element. The
subheading “copyright:” precedes this text in the displayed
description.

Example:

description.copyright=© 2010 Acme Inc.

service

For instance of AbstractAction and AbstractVariable only –
This property is required. A string giving the full java name of
the service class for this element.

Example:

service=com.jbbres.actions.files.CopyFilesService

action.ui

For instance of AbstractAction only. A string giving the full
java name of the UI class for this element.

Example:

action.ui=com.jbbres.actions.files.CopyFilesUI

action.canShowWhenRun

For instance of AbstractAction only. A Boolean (accepted
values are true or false) that controls whether the Show When
Run feature is enabled for the action. It overrides any setting done
within the action code.

Setting this property to true causes the Show When Running the
Workflow check box to be displayed in the top-left corner of the
action view. When the check box is selected, the view is extended
to expose a Prompt: text field.

app.jbbres.com

© 2010 app.jbbres.com 57

Properties action.showWhenRun.selected and
action.showWhenRun.prompt can be used to define the default
state of the Show When Running the Workflow check box and the
default prompt text.

Setting action.canShowWhenRun to false removes Show When
Running the Workflow check box.

Example:

action.canShowWhenRun=true

action.showWhenRun.selected

For instance of AbstractAction only. A Boolean (accepted
values are true or false) that controls whether the Show When
Running the Workflow is by default selected or not for the action.
It overrides any setting done within the action code.

Example:

action.showWhenRun.selected=false

action.showWhenRun.prompt

For instance of AbstractAction only. A String giving the default
prompt text for the Show When Run feature.

Example:

action.showWhenRun.prompt=Select a destination directory

app.jbbres.com

© 2010 app.jbbres.com 58

Revision History
This table describes the changes to Action(s) Developer Guide.

Version Notes

1.0.1 (20/10/2010) Update library folders.

1.0 (12/06/2010) New document that explains how to create actions-
loadable files that perform discrete task for the
Action(s) application.

